Algebra For SBI PO : Set – 29
Algebra For SBI PO : Set – 30
D.1-5) : In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
1) I. (p + q)2 = 3136
II. q + 2513 = 2569
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
2. I. 4p2– 16p +15 = 0
II . 2q2 + 5q – 7 = 0
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
3. I. p2 = 49
II . q2+15q + 56 = 0
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
4) I. 2p2 + 5p – 12 = 0
II. 2q2 – q – 1 = 0
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
5) I. p2– 12p + 35 = 0
II. q2– 25 = 0
(a) if p > q
(b) if p ≥ q
(c) if p < q
(d) if p ≤ q
(e) if p = q or there is no relation between ‘p’ and ‘q’.
D.6–10) : In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.
6) I. 3x2 + 7x + 2 = 0
II. 2y2 + 9y + 10 = 0
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.
7) I. x2 + x – 2 = 0
II. y2 – 3y + 2 = 0
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.
8) I. 20x2 – 51x + 27 = 0
II. 15y2 – 16y + 4 = 0
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.
9. I. 7x2 + 16x – 15 = 0
II. y2 – 6y – 7 = 0
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.
10) I. x2 = 729
II. y2 + 58y + 840 = 0
(a) if x > y
(b) if x < y
(c) if x ≥ y
(d) if x ≤ y
(e) if x = y or there is no relation between ‘x’ and ‘y’.