# TARGET SBI EXAM 2018: QUANTITATIVE- QUADRATIC EQUATION 1

**Want to Become a Bank, Railway or Govt Officer in 2020?**

**Join India’s Most Trusted Coaching Institute**

**100% Result Oriented Coaching @ Lowest Fee**

Bank (PO / Clerk / SO) | RRB NTPC | TNPSC | SSC | Kerala PSC

# TARGET SBI EXAM 2018: QUANTITATIVE- QUADRATIC EQUATION-1

Dear Bankersdaily Aspirants,

Hope , Your preparation for SBI Clerk & PO exam 2018 is good . Since SBI Clerk & PO exam is a Two level which will be conducted in an online mode, Competition will be higher for this SBI Clerk & PO Exam and the most important thing , Current affairs section will be there in this exam. So aspirants have to concentrate in Four sections namely Aptitude, Reasoning, English, Current Affairs.

The person with high speed and very good accuracy only can crack this exam to taste the success. The candidates will be selected on the basis of performance in this online exam test. So the candidate with consistent hard work and regular practice will crack the exam very easily.

Here are some questions which will help you to identify your level of preparation.

Exam: SBI Clerk & PO Exam 2018

Topic: QUADRATIC EQUATION-1

Timing: 7 minutes

**Directions (Q. Nos. 1 to 5) In the following questions, two equations A and B are given. You have to solve both the equations and **

**Give answer**

- If x>y
- If x<y
- If x=y
- If xy
- If xy

1) 2x^{2}+5x+1=x^2+2x-1

2y^{2}-8y+1=-1

2) x^{2}/2+x-1/2=1

3y^{2}-10y+8=y^2+2y-10

3) 4x^{2}-20x+19=4x-1

2y^{2}=26y-84

4) y^{2}+y-1=4-2y-y^{2}

x^{2}/2-3/2 x=x-3

5) 6x^{2}+13x=12-x

1+2y^{2}=2y+5y/6

**Directions (Q. Nos. 6 to 10) In the following questions, two equations A and B are given. You have to solve both the equations and **

**Give answer**

- If x>y
- If x≥y
- If x<y
- If x≤y
- If x=y or the relationship cannot be established

6) x^{2}=169

y-√144=0

7) 12x^{2}+11x+12=10x^{2}+22x

13y^{2}-18y+3=9y^{2}-10y

8) 18/x^{2} +6/x-12/x^{2} =8/x^{2}

y^{3}+9.68+5.64=16.95

9) √1225x+√4900=0

81^{1/4} y+343^{1/3} =0

10) (2^{5}+11^{3})/6=x^{3}

4y^{3}=-(589÷4)+5y^{3}

Answer Key:

1.Sol:

2x^{2}+5x+1=x^2+2x-1

x^{2}+3x+2=0

x^{2}+2x+x+2=0

x(x+2)+1(x+2)=0

(x+2)(x+1)=0

x=-2,-1

2y^{2}-8y+1=-1

2y^{2}-8y+2=0

y^{2}-4y+1=0

(+4±√(16-4×1×1))/(2×1)=2±√12=2±√3

2.Sol:

x^{2}/2+x-1/2=1

x^2+2x-1=2

x^2+2x-3=0

x+3x-x-3=0

x(x+3)-1(x+3)=0

(x+3)(x-1)=0

x=-3, 1

3y^{2}-10y+8=y^2+2y-10

2y^2-12y+18=0

y^2-6y+9=0

(y-3)^2=0

y=3, 3

Ans: b. y>x

3. Sol:

4x^{2}-20x+19=4x-1

4x^2-24x+20=0

x^2-6x+5=0

x^2-5x-x+5=0

x(x-5)-1(x-5)=0

(x-5)(x-1)=0

x=5, 1

2y^{2}=26y-84

y^2=13y-42

y^2-13y+42=0

y^2-7y-6y+42=0

y(y-7)-6(y-7)=0

(y-7)(y-6)=0

y=7,6

Ans: b. y>x

4.Sol:

y^{2}+y-1=4-2y-y^{2}

2y^{2}+3y-5=0

2y^2+5y-2y-5=0

y(2y+5)-1(2y+5)=0

(2y+5)(y-1)=0

y=-5/2, 1

x^{2}/2-3/2 x=x-3

x^2-3x=2x-6

x^2-5x+6=0

x^2-3x-2x+2×3=0

x(x-3)-2(x-3)=0

(x-3)(x-2)=0

x=3, 2

Sol: a. x>y

5.Sol:

6x^{2}+13x=12-x

3x^2+7x-6=0

(x+3)(3x-2)=0

x= -3, 2/3

1+2y^{2}=2y+5y/6

1+2y^2=17y/6 y

12y^2-17y+6=0

12y^2-8y-9y+6=0

4y(3y-2)-3(3y-2)=0

(3y-2)(4y-3)=0

y=2/3,3/4

Ans: e. x≤y

6.Sol:

x^{2}=169x=√169

x=±13

y-√144=0

y=√144

y=12

Ans: e. No relationship cannot be determined

7.Sol:

12x^{2}+11x+12=10x^{2}+22x

2x^2-11x+12=0

2x^2-8x-3x+12=0

(x-4)(2x-3)=0

x=4,3/2

13y^{2}-18y+3=9y^{2}-10y

4y^2-8y+3=0

4y^2-6y-2y+3=0

(2y-3)(2y-1)=0

y=3/2,1/2

Ans: b. x≥y

8.Sol:

18/x^{2} +6/x-12/x^{2} =8/x^{2}

(18+16x-12)/x^2 =8/x^2

6x+6=8

x=2/6=0.33

y^{3}+9.68+5.64=16.95

y^3=16.95-15.32

y^3=1.63

y=∛1.63

y=1.176

Ans: c. x < y

9.Sol:

√1225x+√4900=0

35x+70=0

x=-70/35=-2

81^{1/4} y+343^{1/3} =0

3y+7=0

3y=-7

y=-7/3=-2.33

Ans: a. x>y

10.Sol:

(2^{5}+11^{3})/6=x^{3}

(32+1331)/6=x^{3}

1363/6=x^3

x^{3}=227.167

4y^{3}=-(589÷4)+5y^{3}

4y^{3}= -589/4+5y^{3}

589/4=y^{3}

y^{3}=147.25

y=5.280

Ans: a. x>y

**For the other Sections in the Day 3 of the TARGET SBI PLANNER , please check the below given links.**

Aspirants can also check the other topics from the SBI CLERK STUDY PLANNER from the link given below. DO bookmark the given link as all the posts will be updated in that page and aspirants can check the daily updates from this page or from the Homepage of Bankersdaily.